UC San Diego Health

Revision rates after endoscopic sinus surgery: a large database analysis

Aria Jafari MD, PGY-4 Nathan R. Stein BS Adam S. DeConde MD

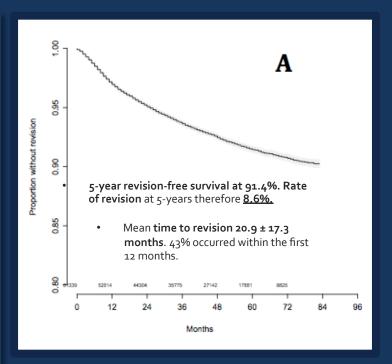
University of California, San Diego Medical Center Department of Surgery/Otolaryngology- Head & Neck Surgery

UCSD Surgical Sciences Research Symposium May 3rd, 2017

Background

- Chronic rhinosinusitis (CRS) is common, direct/indirect cost: 23 billion.
- U.S. epidemiological/prevalence data for endoscopic sinus surgery (ESS) and **revision ESS** is limited, despite impact on quality-of-life and costs.
- We used data from Healthcare Cost and Utilization Project (HCUP), specifically the State Ambulatory Surgery and Services Database (SASD) to better understand:
 - (1) rate of revision ESS
 - (2) time to revision and
 - (3) **relevant patient characteristics** associated with revision.

Objective: to characterize the true burden of revision ESS and highlight associated contributing factors.


UC San Diego Health

Results

Table 1. Baseline characteristics. Patient data split by those who underwent a revision surgery vs. those who did not. Data presented as the number of patients, and percentage of total (i.e. 30.92% of patients who did not have revision surgery had nasal polyps). T-test was performed for age. All other analyses are logistic regression yielding odds ratios with 95% confidence intervals.

Parameter	Total (N=61,339)	No revision (N=57,261)	Revision (N=4,078)	OR (95% CI)	<i>P</i> -value
Nacal Dalums no (9/)	19093 (31.1)	17703 (30.9)	1390 (34.1)	1.16 (1.08-1.24)	<0.001
Nasal Polyps - no. (%)	, ,	, ,	, ,	1.16 (1.08-1.24)	<0.001
Age - yr (mean ± SD)	49.21 ± 14.77	49.20 ± 14.81	49.35 ± 14.20		0.512
Female sex - no. (%)	28310 (46.2)	26259 (45.9)	2051 (50.3)	1.19 (1.12-1.27)	<0.001
Ethnicity - no. (%)					
White	38863 (63.4)	36260 (63.3)	2603 (63.8)	1.02 (0.96-1.09)	0.517
Black	1310 (2.1)	1213 (2.1)	97 (2.4)	1.13 (0.91=1.39)	0.267
Hispanic	6289 (10.3)	5917 (10.3)	372 (9.1)	0.87 (0.78-0.97)	0.014
Asian	3002 (4.9)	2820 (4.9)	182 (4.5)	0.90 (0.77-1.05)	0.187
Native	26 (.04)	26 (.05)	0	NA	0.174
Other	11849 (19.3)	11025 (19.3)	824 (20.2)	1.06 (0.98-1.15)	0.137
Insurance - no. (%)					
Public	12696 (20.7)	11841 (20.7)	855 (21.0)	1.02 (0.94-1.10)	0.662
Private	46609 (76.0)	43545 (76.0)	3064 (75.1)	0.95 (0.88-1.02)	0.188
Income - no. (%)					
First quartile	9431 (15.4)	8828 (15.4)	603 (14.8)	0.95 (0.87-1.04)	0.281
Second quartile	13665 (22.3)	12797 (22.4)	868 (21.3)	0.94 (0.87-1.02)	0.115
Third quartile	16235 (26.5)	15115 (26.4)	1120 (27.5)	1.06 (0.98-1.13)	0.135
Fourth quartile	20791 (33.9)	19385 (33.9)	1406 (34.5)	1.03 (0.96-1.10)	0.416
Urban setting	55979 (91.3)	52221 (91.2)	3758 (92.1)	1.13 (1.01-1.28)	0.037

Significant differences (P<0.05) in bold type

Discussion

Nasal Polyps

- Supports literature that the presence of **nasal polyps increase the rate of revision** surgery.
- Unclear if it is due to the pathophysiology of disease or if there are variables within the surgeons control (ie. extent of surgery).

Gender

- Asthma literature demonstrates gender differences in health care utilization, with women seeking care sooner and with more clinic visits.
- Female gender may impart increased disease severity, prior studies postulate influence of estrogen on the immune response (CRSwNP).

Ethnicity

- Prior research (Soler 2012) has shown that Hispanics are:
 - Less likely to be insured.
 - Less likely to see a specialist.
 - More likely to delay medical care due to cost.

UC San Diego Health Suggests inherent systemic issues irrespective of the above that need to be further studied.

Summary

- **61,339** patients were identified who underwent outpatient ESS in CA between 2005-2011.
- 4,078 patients underwent revision ESS. Largest study to date.
- Revision-free survival at 5 years was 91.4%, or revision rate of 8.6%.
- Patient with nasal polyps and women were more likely to undergo revision surgery.
- Patients of **Hispanic** ethnicity were *less likely* to undergo revision surgery.
- Findings illustrate the need for further investigation in cultural and gender-based differences in CRS and ESS within the U.S. health system.

UC San Diego Health

References

- 1. DeConde AS, Soler ZM. Chronic rhinosinusitis: Epidemiology and burden of disease. *Am J Rhinol Allergy* 2016;30(2):134-9.
- 2. Wu AW, Ting JY, Platt MP, Tierney HT, Metson R. Factors affecting time to revision sinus surgery for nasal polyps: a 25-year experience. *Lαryngoscope* 2014;124:29-33.
- 3. Mendelsohn D, Jeremic G, Wright ED, Rotenberg BW. Revision rates after endoscopic sinus surgery: a recurrence analysis. *Annαls Otol Rhinol Laryngol* 2011;120:162–166.
- 4. Philpott C, Hopkins C, Erskine S, Kumar N, Robertson A, Farboud A. The burden of revision sinonasal surgery in the UK-data from the Chronic Rhinosinusitis Epidemiology Study (CRES): a cross-sectional study. *BMJ Open* 2015; 5(4):1-8
- 5. Naseri I, DelGaudio JM. 2008. Predictors of failure in primary surgery. In Kountakis SE, Jacobs JB, Gosepath J *Revision Sinus Surgery* (pp. 19-22). Berlin: Springer.
- 6. Jiang RS, Hsu CY. Revision functional endoscopic sinus surgery. *Ann Otol Rhinol Laryngol* 2010;111:155–159
- 7. Lazar RH, Younis RT, Long TE, Gross CW. Revision functional endonasal sinus surgery. *Ear Nose Throat J* 1992;71:131–1316.
- 8. Deal RT, Kountakis SE. Significance of nasal polyps in chronic rhinosinusitis: symptoms and surgical outcomes. *Laryngoscope* 2004;114:1932–1935
- 9. DeConde, A. S., Mace, J. C., Levy, J. M., Rudmik, L., Alt, J. A. and Smith, T. L. Prevalence of polyp recurrence after endoscopic sinus surgery for chronic rhinosinusitis with nasal polyposis. The Laryngoscope. 2016. [Epub ahead of print].
- 10. Stevens WW, Peters AT, Suh L, Norton JE, Kern RC, Conley DB, Chandra RK, Tan BK, Grammer LC, Harris KE, Carter RG, Kato A, Urbanek M, Schleimer RP, Hulse KE. A retrospective, cross-sectional study reveals that women with CRSwNP have more severe disease than men. *Immunity, Inflammation and Disease* 2015;3(1):14-22.
- 11. Sinclair AH, Tolsma DD. Gender differences in asthma experience and disease care in a managed care organization. *J Asthmα*. 2006;43(5):363-367.
- 12. Soler ZM, Mace JC, Litvack JR, Smith TL. Chronic rhinosinusitis, race, and ethnicity. *Am J Rhinol Allergy*. 2012;26(2):110-116.

Thank you!

Contact: arjafari@ucsd.edu